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INVARIANTS OF STRUCTURES

CHARLOTTE ATEN

Abstract. We give a categorification of the notion of a mathematical struc-

ture originally given by Bourbaki in their set theory textbook. We show that

any isomorphism-invariant property of a finite structure can be computed by

counting the number of isomorphic copies of small substructures it contains.

Our main theorem in this direction is a generalization of the classical result

of Hilbert about elementary symmetric polynomials generating the algebra of

all symmetric polynomials. We also show that, for structures built from sets,

the Yoneda functor extends to a canonical embedding of any such category

of structures into an associated category of structures in the sense of classical

model theory.
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1. Introduction

When Bourbaki began writing the Éléments de mathématique, well before cat-
egory theory had been introduced in algebraic topology, much less in the rest of
mathematics, they sought to lay out in the first text of the series, Theory of Sets a
systematic description of mathematical structures as they would appear throughout
the rest of the series[1]. A simplified version of their treatment was that a structure
was a set, say A, equipped with an indexed family {fi}i∈I of relations fi where each
fi was a subset of a set which could be constructed from A by taking Cartesian
products and powersets finitely many times. Thus, denoting by P(A) the collection
of subsets of A, a relation on A might be a subset of

A× P(P(A)×A57)× P(P(P(A))),
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2 C. ATEN

for instance. Note that the now-usual relational structures of model theory are
precisely these without allowing the powerset operator.

Bourbaki defined what we would now call morphisms of these structures and
proved several results about them, all of which turned out to be of a categorical
nature. This is only natural, since Eilenberg was a member of the group. Once
his work with Mac Lane had established category theory, Grothendieck and then
Cartier were asked to produce a category theory component for the Éléments, al-
though if either did their contribution never made it into the texts. Discussions
in “La Tribu” during the 1950s seem to indicate that Bourbaki felt much of the
Éléments would have to be rewritten in order to accommodate the new notions from
category theory. More damning for categories in the Éléments was the difficulty
of synthesizing the structural and categorical viewpoints together. The consensus
became that this task was not worth the effort[3, p.328].

While we don’t comment on whether it would have been worth it for Bourbaki
to include a fusion of the notions of category and structure in the Éléments, we do
present one possible categorification of the concept of structure here. We postpone
our formal development until Section 5 and begin with a proof of a generalization
of a result of Hilbert about symmetric polynomials[5, p.191] to the setting of finite
structures. This generalization is our Theorem 1 and has the perhaps surprising
implication (given as Corollary 1) that any first-order property of a finite structure
A can be checked by counting the number of embeddings of small substructures
B →֒ A, where “small” is a function of the logical complexity of the first-order
property.

Once we have gone through our formal treatment of structures in Section 5, we
can prove our final result in Section 6, which is Proposition 9 and which says that
any category of structures built from sets may be embedded into a category of
structures in the classical, model-theoretic sense by way of the Yoneda functor,
providing one is willing to adopt a large signature.

This work is reminiscent of some similar topics where combinatorics and category
theory overlap, although to this author’s knowledge the ideas presented here haven’t
been addressed elsewhere. In particular, there is the theory of combinatorial species,
where generating functions are associated to families of finite structures[4]. While
we will be counting finite structures here, it seems at the moment that there is only
a superficial relationship with the results in that area.

In a related vein, the author would like to thank John Baez for pointing out the
work of Lovász on structures, which concerns polynomials created by taking sums
and products of finite structures themselves[7].

The relationship between finite structures and certain classes of logical formulae
has been treated elsewhere. See [2], for instance, where methods from universal
algebra are used to obtain some complexity results.

We make one final acknowledgment to Bill Lawvere (and universal algebra). The
idea of categorifying Bourbaki’s structures was very much inspired by Lawvere’s
thesis work on algebraic theories, a categorical treatment of universal algebra[6].
Any connection beyond the thematic is beyond the scope of the present work, but
it would be interesting to examine the relationship between algebraic categories
and categories of structures as defined here, particularly in light of the embedding
result given as Proposition 9.
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This paper is organized thusly: Following this introduction, we treat structures
in an intuitive way in Section 2. This will allow the reader to proceed on to most
of the main results (Theorem 1 and Corollary 1) without learning our general the-
ory of structures. In Section 3 we examine polynomials associated to finite struc-
tures and prove our aforementioned generalization of Hilbert’s result on symmetric
polynomials as Theorem 1. After this, we tie our results in to logic in Section 4
and prove our claim connecting these polynomials with combinatorics and logic as
Corollary 1. Our penultimate Section 5 gives our categorical treatment of Bour-
baki’s structures, and our final section closes with Proposition 9, which says in part
that (modulo accepting a large signature, and only for structures built from sets,
and with all due credit to Yoneda) we could have just stuck with classical model
theory avoided all of this.

2. Structures, näıvely

As mentioned in the introduction, Bourbaki’s original treatment of structures
was fairly involved and presumably a categorification might be even more convo-
luted. Thus, we postpone this formal development until Section 5 and present three
possible ways for the reader to think about structures in this section.

The first is that one might consider a finite structure as one would in model
theory. That is, a finite structure is a pair A := (A, {fi}i∈I) where A is a finite set

and the fi form an I-indexed sequence of relations fi ⊂ Aρ(i) where the function
ρ : I → N is the signature of A. We denote by Structρ the evident category and by
StructρA the collection of all structures of the same signature on the set A, which we
call a kinship class. The class Structρ of all structures with signature ρ is likewise
called a similarity class. We will always take the index set I to be finite here.

Reading the paper this way, one can take the statementN ∈ Ob(I ) to meanN ∈
I. Similarly, F (N) indicates the basic relation fN . Wherever we write ρA(N) we
mean nothing more that Aρ(N). One may safely ignore statements about Mor(I )
and any corresponding discussion of F (ν). While there may be a couple comments
which remain mysterious in Section 2 and Section 3 given this perspective, it should
be possible to glide over them without any great harm to understanding.

The second way of thinking about finite structures is in the sense of Bourbaki.
That is, do the same as in the preceding paragraphs but allow yourself to think of
a relation as allowing powerset operators and Cartesian products in arbitrary finite
compositions. This makes it easier to see how finite topological spaces could be
counted among finite structures.

The third way, which should probably be postponed on first reading, is to instead
go through Section 5 first to see structures (not necessarily finite, or even built from
sets at all) in their full, formal generality. This will make the following sections
much more rigorous at the expense of adding extra bookkeeping.

2.1. Substructures. There is a natural categorical definition of a substructure.
We will make use of this notion in order to disucss meets and joins in a corresponding
lattice as part of the proof of Lemma 1.

Definition 1 (Substructure). Given a structure A of signature ρ we refer to a
subobject of A in Structρ as a substructure of A.

In the case of Set-structures we can give a concrete description of the poset
of substructures. Given a Set-structure A := (A,F ) of signature ρ we have that
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A consists of, for each N ∈ Ob(I ), a subset F (N) ⊂ ρA(N), and, for each ν ∈
Mor(I ) with domain N , a restriction (on both the domain and codomain) F (ν) =
(ρA(ν))|F (N). This means that for a collection of subsets of the ρA(N) to form
a structure of signature ρ it is necessary and sufficient that given a morphism
ν : N1 → N2 from I we have that the image of F (N1) under ρA(ν) is contained in
F (N2).

Note that a Set-structure with universe A is a substructure of the structure
(A, idρA). A substructure of someA1 := (A,F1) ∈ StructρA is then another structure
A2 := (A,F2) ∈ StructρA such that A2 ≤ A1 in the substructure poset of (A, idρA),
which is equivalent to having for each N ∈ Ob(I ) that F2(N) ⊂ F1(N).

One can verify that the substructure poset of (A, idρA) forms a complete lattice
and hence the substructure poset Sub(A) of any A ∈ StructρA is also a complete
lattice. Since the substructure poset of (A, (idρA)) is a sublattice of a Boolean
lattice all of these lattices are also distributive.

2.2. Finite structures. We give formal definitions of finite structures here, but if
you’re thinking of model-theoretic or Bourbakian structures you can ignore these
definitions in favor of the ones you already have in mind.

Definition 2 (Finite signature). We say that a signature ρ : I → Fun(Set,Set)
is finite when I has finitely many objects and finitely many morphisms and for
each N ∈ Ob(I ) and each finite set A we have that ρA(N) is finite.

Definition 3 (Finite structure). We say that a structure of finite signature ρ on a
finite set is a finite structure.

Definition 4 (Finite kinship class). When ρ is a finite signature and A is a finite
set we say that StructρA is a finite kinship class.

Note that each of the members of a finite kinship class are finite structures and
that the kinship class itself is a finite set.

3. Symmetric polynomials

We prove here, as Theorem 1, our generalization of Hilbert’s classical result
on symmetric polynomials. In order to do this, we consider polynomial algebras
associated to finite kinship classes.

3.1. Definitions. As will be elucidated further in Section 4, we will be building
polynomials from variables which are meant to check whether a particular element
of ρA(N) belongs to F (N) or not. For example, if we are considering the case where

ρA(N) =
(

A
2

)

then we will introduce variables xN,{a1,a2} where {a1, a2} ∈
(

A
2

)

.

Definition 5 (Variables Xρ
A). Given a finite signature ρ on an index category I

and a finite set A we define

X
ρ
A
:=
⋃

N∈Ob(I )

{xN,a | a ∈ ρA(N) } .

Given a commutative ring R and a set X we write R[X ] to denote the free
commutative unital R-algebra generated by X and R[X ] to denote that algebra’s
universe.



INVARIANTS OF STRUCTURES 5

Definition 6 (Monomial yA). Given a finite signature ρ on an index category I ,
a finite set A, and a structure A := (A,F ) ∈ StructρA we define

yA :=
∏

N∈Ob(I )

∏

a∈F (N)

xN,a.

Note that there is always an empty structure of a given signature and hence one
of the yA will always be 1.

Definition 7 (Monomials Y ρA). Given a finite signature ρ on an index category I

and a finite set A we define

Y
ρ
A
:= { yA | A ∈ StructρA } .

Definition 8 ((ρ,A) polynomial algebra). Given a commutative ring R, a finite
signature ρ, and a finite set A we define the (ρ,A) polynomial algebra over R to
be the subalgebra of R[Xρ

A] which is generated by Y ρA . We denote this algebra by
Pol

ρ
A(R) and its universe by PolρA(R).

We omit the ring R when we take R to be Z. For example, we write Pol
ρ
A to

indicate Pol
ρ
A(Z).

By our previous comment that 1 ∈ Y
ρ
A polynomials in PolρA(R) can have any

nonzero constant term.
In order to prove the main result of this section we will need the following lemma

on the factorization of monomials in Pol
ρ
A(R).

Lemma 1. Given yA1
, . . . , yAk

∈ Y
ρ
A we have that

k
∏

i=1

yAi
= y∨k

i=1
Ai
µ

where µ ∈ PolρA.

Proof. We induct on the number of factors k. When k = 1 we can take µ = 1 and
when k = 2 we can take µ = yA1∧A2

. Take k ≥ 3 and suppose that we have the
result for all k′ < k. In this case we observe that

(

k−1
∏

i=1

yAi

)

yAk
=
(

y∨k−1

i=1
Ai
µ
)

yAk

=
(

y∨k−1

i=1
Ai
yAk

)

µ

=
(

y(
∨k−1

i=1
Ai)∨Ak

µ′
)

µ

= y∨k
i=1

Ai
µµ′.

Since µ, µ′ ∈ PolρA we have that µµ′ ∈ PolρA, as well. �

We have a natural action of ΣA on R[Xρ
A].

Definition 9 (Action υ). We define a group action υ : ΣA → Aut(R[Xρ
A]) by

setting (υ(σ))(xN,a) := xN,(ρσ(N))(a) and extending.

Definition 10 (Symmetric polynomial). A polynomial p ∈ PolρA(R) is called sym-
metric when for every σ ∈ ΣA we have that (υ(σ))(p) = p.
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Definition 11 ((ρ,A) symmetric polynomial algebra). We denote by SymPolρA(R)
the set of symmetric polynomials in PolρA(R) and we denote by SymPol

ρ
A(R) the

subalgebra of PolρA(R) with universe SymPolρA(R), which we refer to as the (ρ,A)
symmetric polynomial algebra over R.

Of particular interest are a family of polynomials arising from the isomorphism
classes of members of StructρA.

Definition 12 (Action ζ). We define a group action ζ : ΣA → ΣStructρA
by

(ζ(σ))(A,F ) := (A, ρσ ◦ F ).

This action is well-defined as a change in representative F doesn’t change the
equivalence class of monomorphisms to which ρσ ◦ F belongs.

Definition 13 (Isomorphism classes of structures). We define

IsoStrρA := {Orbζ(A) | A ∈ StructρA } .

Definition 14 (Elementary symmetric polynomial). Given a finite signature ρ,
a finite set A, and an isomorphism class ψ ∈ IsoStrρA we define the elementary
symmetric polynomial of ψ to be

sψ :=
∑

A∈ψ

yA.

Definition 15 (Polynomials SρA). Given a finite signature ρ and a finite set A we
define

S
ρ
A
:= { sψ | ψ ∈ IsoStrρA } .

Proposition 1. The elementary symmetric polynomials are symmetric polynomi-
als.

Proof. Let sψ be an elementary symmetric polynomial over R. Since sψ is a sum
of monomials belonging to Y ρA we have that sψ ∈ PolρA(R). Take σ ∈ ΣA. We have
that

(υ(σ))(sψ) = (υ(σ))





∑

(A,F )∈ψ

∏

N∈Ob(I )

∏

a∈F (N)

xN,a





=
∑

(A,F )∈ψ

∏

N∈Ob(I )

∏

a∈F (N)

(υ(σ))(xN,a)

=
∑

(A,F )∈ψ

∏

N∈Ob(I )

∏

a∈F (N)

xN,(ρσ(N))(a)

=
∑

(ζ(σ))(A,F )
(A,F )∈ψ

∏

N∈Ob(I )

∏

a∈(ρσ◦F )(N)

xN,a

=
∑

(A,F )∈ψ

∏

N∈Ob(I )

∏

a∈F (N)

xN,a

= sψ,

as claimed. �
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3.2. A generating set. We introduce a notion of weight for polynomials in our
context and prove our main theorem on symmetric polynomials.

Definition 16 (Magnitude of a structure). Given a finite structure A := (A,F ) ∈
StructρA we define the magnitude of A to be

‖A‖ :=
∑

N∈Ob(I )

|F (N)| .

Definition 17 (Magnitude of an isomorphism class). Given ψ ∈ IsoStrρA we define
the magnitude of ψ to be ‖ψ‖ := ‖A‖ for any A ∈ ψ.

Since isomorphic structures have the same magnitude ‖ψ‖ is well-defined.

Proposition 2. We have that sψ is homogeneous of degree ‖ψ‖.

Proof. Observe that sψ is a sum of monomials, one for each member A of ψ. Each
of these monomials have degree ‖A‖ = ‖ψ‖. �

Definition 18 (Variables ZρA). Given a finite signature ρ on an index category I

and a finite set A we define

Z
ρ
A
:= { zψ | ψ ∈ IsoStrρA } .

Definition 19 (Weight of a monomial). The weight of a monomial
∏

ψ z
dψ
ψ in

R[ZρA] is defined to be
∑

ψ ‖ψ‖ dψ .

Definition 20 (Weight of a polynomial). The weight of a polynomial p ∈ R[ZρA]
is the maximum of the weights of the monomials appearing in p.

We generalize a statement of Hilbert by showing that the elementary symmetric
polynomials generate the algebra of symmetric polynomials. We follow Lang’s
treatment[5, p.191].

Theorem 1. Given a polynomial f ∈ SymPolρA(R) of degree d there exists a poly-
nomial g ∈ R[ZρA] of weight at most d such that f = g|Zρ

A
=Sρ

A
.

Proof. Define n := |A|. We induct on n. When n = 0 we have that ΣA is triv-
ial and hence each class in IsoStrρA contains a unique member. It follows that
SymPolρA(R) = PolρA(R) and the Y ρA are precisely the elementary symmetric poly-
nomials. The polynomial g can be obtained from f by replacing each occurrence
of a monomial yA in a term of f with the corresponding singleton orbit variable
z{A}. By definition of the weight of a polynomial this choice of g will have weight
precisely d.

Suppose that n > 0 and that we have the result for n − 1. We induct on d.
Put a total order on A so that A = {a1, . . . , an}. Define B := A \ {an} and define
ι : B → A to be inclusion given by ι(ai) := ai. For each N ∈ Ob(I ) this map
induces an inclusion ρι(N) : ρB(N) → ρA(N). Define

An :=
⋃

N∈Ob(I )

{ xN,a | a ∈ ρA(N) \ Im(ρι(N)) }

to be the collection of variables in X
ρ
A depending on an. We have that f |An=0 ∈

SymPolρB(R) so there exists some g1 ∈ R[ZρB] of weight at most d such that
f |An=0 = g1|Zρ

B
=Sρ

B
. Note that for each sψ ∈ S

ρ
B there is a unique member

s′ψ ∈ S
ρ
A such that sψ = (s′ψ)|An=0. By the inclusion induced by ι identify g1
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with a polynomial, which we will also call g1, belonging to R[ZρA]. We find that
f |An=0 = (g1|Zρ

A
=Sρ

A
)|An=0. Define f1 := f − g1|Zρ

A
=Sρ

A
. Observe that f1 has degree

at most d and is symmetric.
By applying our lemma on the factorization of monomials we can write f1

uniquely as

f1 =
∑

A∈Structρ
A

yApA

where each yA is the monomial factor guaranteed by that lemma. Since f1 has
no constant term each pA ∈ PolρA(A) has degree strictly less than d. Since f1 is
symmetric the application of some σ ∈ ΣA would appear to give us a different such
expression for f1. It follows that if A1

∼= A2 then pA1
= pA2

. We can then collect
terms to obtain f1 =

∑

ψ∈IsoStrρ
A
sψpψ where pψ = pA for any A ∈ ψ. Applying

the inductive hypothesis to the pA we obtain pA = (gA)|Zρ
A
=Sρ

A
where each gA has

weight at most d − ‖ψ‖. It follows that f1 can be written as a polynomial g2 in
the elementary symmetric polynomials of weight at most d. That is, there exists
some g2 ∈ R[ZρA] of weight at most d such that f1 = g2|Zρ

A
=Sρ

A
. This implies that

f = (g1 + g2)|ZρA=SρA
where g1 + g2 ∈ R[ZρA] has weight at most d. �

Although it happens that (f1)|An=0 = 0 and hence each term in f1 is divisible by
some element of An we did not need to use this fact. We can make an observation
analogous to the one in the proof in Lang (loc. cit.) in this direction, which is that
by symmetry each term in f1 must be divisible by some element of Ai for each i.
This suffices in that special case because there is a minimal monomial with this
property.

Most of our definitions and arguments go through if we use a suitably finite
signature ρ : I → Fun(Set,Setop) instead. If a similar result for this class of
structures is to be proved then we must make a change at the point where we
take the induced map ρι(N), for this will now give us a morphism in Setop whose
corresponding map in Set is one taking members of ρA(N) to members of ρB(N).

It is not the case in general that the symmetric polynomials SρA generate

SymPol
ρ
A(R)

freely. We give a specific example of a nontrivial algebraic relation between ele-
mentary symmetric polynomials in the next section.

3.3. Example: domain digraphs. Most of the categories of structures with
which we are already acquainted have no nontrivial relators. We consider structures
with a relator which is not an identity or isomorphism in order to get a flavor of
the general case.

Definition 21 (Domain digraph). A domain digraph with universe A consists of
some E ⊂ A2 and some W ⊂ A such that for each (a0, a1) ∈ E we have that
π(a0, a1) = a0 ∈W .

We can visualize this as a digraph E on a set of vertices A where a subsetW ⊂ A

of domain vertices are marked. Each edge in E must have its source vertex in W ,
although in general a domain vertex need not be the source of any edge in E. We
will denote a domain digraph A with universe A, edge set E, and domain vertex
set W by A := (A,E,W ).



INVARIANTS OF STRUCTURES 9

Domain digraphs can be construed as structures in our formal sense where there
are two basic relations and a morphism between them in the index category I .

We give an example where the elementary symmetric polynomials SρA are al-
gebraically dependent. Take A := {x0, x1}. In this case we have that A2 =
{x00, x01, x10, x11}. Observe that

X
ρ
A = {x0, x1, x00, x01, x10, x11}

and

Y
ρ
A = {1, x0, x1, x0x1,

x00x0, x00x0x1, x01x0, x01x0x1, x10x1, x10x0x1, x11x1, x11x0x1,

x00x01x0, x00x01x0x1, x00x10x0x1, x00x11x0x1,

x01x10x0x1, x01x11x0x1, x10x11x1, x10x11x0x1,

x00x01x10x0x1, x00x01x11x0x1, x00x10x11x0x1, x01x10x11x0x1,

x00x01x10x11x0x1}.

We find that

S
ρ
A = {1, s0, s0,1, s00,0, s00,0,1, s01,0, . . . }.

One example of an algebraic dependence between the elementary symmetric poly-
nomials is

s00,0s01,0 = (x00x0 + x11x1)(x01x0 + x10x1)

= x00x01x
2
0 + x00x10x0x1 + x01x11x0x1 + x10x11x

2
1

= (x00x01x0 + x10x11x1)(x0 + x1)− (x00x01x0x1 + x10x11x0x1)+

(x00x10x0x1 + x01x11x0x1)

= s00,01,0s0 − s00,01,0,1 + s00,10,0,1.

More succinctly, we have

s00,0s01,0 − s00,01,0s0 + s00,01,0,1 − s00,10,0,1 = 0.

This situation is different from that of the classical elementary symmetric polyno-
mials, which are algebraically independent.

4. Logic by counting

We describe how to use Theorem 1 to check whether a first-order property holds
for a given finite structure. In particular, we will see that we can verify whether
any such first-order property holds for a finite structure by merely counting how
many isomorphic copies of small substructures it contains and then evaluating a
polynomial with integer coefficients at these values. It will turn out that “small”
can be taken to mean either “expressible by a low-complexity formula” or “verifiable
locally”, and that these meanings always coincide.

In order to do this, we describe how to translate formulas in first-order logic into
polynomials.

Definition 22 (Kindred language). Given a finite kinship class StructρA the kindred
language LρA is the negation-free fragment of the first-order language whose atomic
formulae are those of the form γ(N, a) where N ∈ Ob(I ) and a ∈ ρA(N).
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That is, formulae from LρA consist of those atoms γ(N, a) along with those for-
mulae which can be formed by conjunction, disjunction, and quantification (either
universal or existential) over the arguments of known such formulae.

We interpret the formula γ(N, a) as indicating the statement a ∈ F (N) for some
structure A := (A,F ) from the finite kinship class StructρA. That is, we say that

A := (A,F ) |= Γ ∈ LρA

when the sentence ΓA obtained by replacing each instance of γ(N, a) with a ∈ F (N)
in Γ holds. Note that this only makes sense for a choice of F such that F (N) ⊂
ρA(N), but this is the natural choice for F in the context of finite structures, in
any case.

Note that our abnegation of negation in the language LρA does not reduce our
expressiveness from general first-order logic in the sense that given any property
P of structures in StructρA, we can express “A is among the structures in StructρA
which satisfy property P” in LρA as

∨

(A,F )∈P ′

∀N∈Ob(I )∀a∈F (N)γ(N, a)

where P ′ is the set of unique representatives of the structures from StructρA which
have property P obtained by taking F (N) to be a subset of ρA(N) in each instance.

On a similar note, we lose nothing by dropping the universal and existential
quantifiers, as well, since we are only quantifying over finite sets and we can always
replace the quantifier with an appropriate conjunction or disjunction. Nevertheless,
we will retain the quantifiers for the sake of readability.

We now give the map taking sentences in LρA to Z[Xρ
A].

Definition 23 (Polynomial realization). The polynomial realization function

ξ : LρA → Z[Xρ
A]

is given by

ξ(Γ) :=































xN,a when Γ = γ(N, a)

ξ(Γ1) + ξ(Γ2) when Γ = Γ1 ∨ Γ2

ξ(Γ1)ξ(Γ2) when Γ = Γ1 ∧ Γ2
∑

a∈ρA(N) ξ(Γ
′(N, a)) when Γ = ∃a∈ρA(N)Γ

′(N, a)
∏

a∈ρA(N) ξ(Γ
′(N, a)) when Γ = ∀a∈ρA(N)Γ

′(N, a).

Note that in general we don’t have that ξ(Γ) ∈ PolρA. Consider the example of
domain digraphs from Subsection 3.3. Given the universe A := {x0, x1} from that
example, we can have that

ΓA = (x10 ∈W )

and hence

ξ(Γ) = x10,

but this monomial does not belong to PolρA since it cannot be realized by a structure
from StructρA. (Recall that, for domain digraphs, any monomial containing x10 must
also have x1 as a factor.)

We adopt some more language in light of this map. We say that Γ ∈ LρA is
structural when ξ(Γ) ∈ PolρA. Our preceding example of a formula Γ for the kin-
dred language of domain digraphs with universe {x0, x1} was not structural. Such
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formulae are among those which can never be modeled by any of the structures in
the relevant kinship class.

Finally, we will say that Γ ∈ LρA is isomorphism-invariant when ξ(Γ) ∈ SymPolρA.
Clearly, a formula may be structural without being isomorphism invariant. For
instance, the property that a group with universe {a, b} has a as its identity element
can be expressed by a structural formula, but not an isomorphism-invariant one.

We will say that a property P of structures from StructρA is isomorphism-
invariant when there exists some Γ ∈ LρA which is isomorphism-invariant in the
above sense and for which A satisfies P exactly when A |= Γ. Note that by our
previous observations, this coincides with our informal notion of an isomorphism
invariant property (i.e. isomorphism-invariant subset of StructρA).

There is an evident evaluation map which takes polynomials from R[Xρ
A] to

elements of R.

Definition 24. Given any polynomial p ∈ R[Xρ
A] and a structure A ∈ StructρA we

define p(A) by extension of the rule

xN,a(A) :=

{

1 when A |= γ(N, a)

0 otherwise
.

Before we reach the punchline of this section, we need one lemma.

Lemma 2. Given Γ ∈ LρA and a structure A ∈ StructρA, we have that A |= Γ if
and only if (ξ(Γ))(A) > 0.

Proof. We induct on the structure of Γ. The base case is that Γ = γ(N, a). Since
ξ(Γ) = xN,a, we have that (ξ(Γ))(A) > 0 exactly when A |= γ(N, a) = Γ. Observe
that for any structure A and any formula Γ we have that (ξ(Γ))(A) ≥ 0.

When Γ = Γ1 ∨ Γ2 we have that

ξ(Γ) = ξ(Γ1) + ξ(Γ2).

By our inductive hypothesis, A |= Γ1 if and only if (ξ(Γ1))(A) > 0 and A |= Γ2 if
and only if (ξ(Γ2))(A) > 0. It follows that A |= Γ when either (ξ(Γ1))(A) > 0 or
(ξ(Γ2))(A) > 0. Since

(ξ(Γ))(A) = (ξ(Γ1))(A) + (ξ(Γ2))(A)

we find that A |= Γ if and only if (ξ(Γ))(A) > 0.
When Γ = Γ1 ∧ Γ2 we have that

ξ(Γ) = ξ(Γ1)ξ(Γ2).

By our inductive hypothesis, A |= Γ1 if and only if (ξ(Γ1))(A) > 0 and A |= Γ2 if
and only if (ξ(Γ2))(A) > 0. It follows that A |= Γ when both (ξ(Γ1))(A) > 0 and
(ξ(Γ2))(A) > 0. Since

(ξ(Γ))(A) = (ξ(Γ1))(A)(ξ(Γ2))(A)

we find that A |= Γ if and only if (ξ(Γ))(A) > 0.
The arguments for the cases where

Γ = ∃a∈ρA(N)Γ
′(N, a)

and
Γ = ∀a∈ρA(N)Γ

′(N, a)

are essentially identical to those for disjunctions and conjunctions. �
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Now we can state our corollary of Theorem 1.

Corollary 1. Suppose that P is an isomorphism-invariant property of structures
from StructρA such that a structure satisfies P exactly when that structure models
the isomorphism-invariant formula Γ ∈ LρA. Such a property can be seen to hold (or
not) for a particular A ∈ StructρA by counting substructures of A and evaluating
a polynomial with integer coefficients at the resulting values. Moreover, the size of
the substructures needed is bounded by the complexity of the formula Γ.

Proof. By Lemma 2 we have that A |= Γ if and only if (ξ(Γ))(A) > 0. We will show
that (ξ(Γ))(A) may be computed by counting substructures of A. By assumption,
ξ(Γ) ∈ SymPolρA and therefore by Theorem 1 we have that

ξ(Γ) = g|Zρ
A
=Sρ

A

for some polynomial g ∈ Z[ZρA] of weight at most d, where d is the degree of ξ(Γ).
The polynomial g is the claimed polynomial with integer coefficients. It remains to
examine the arguments of g.

Observe that for each sψ ∈ S
ρ
A we have that

sψ(A) = |{B ∈ ψ | B ≤ A }| .

Thus, we have that (ξ(Γ))(A) can be computed by evaluating g at arguments which
are the counts of substructures of A belonging to various isomorphism classes.

We proceed to address our claim on a bound for the sizes of the substructures
needed for this calculation. More explicitly, we can bound ‖ψ‖ such that zψ appears
to a positive power in a monomial of g with a nonzero coefficient. Suppose that Γ
can be written in disjunctive normal form as

Γ =

m
∨

i=1

nm
∧

j=1

γ(Nij , aij)

and that no atomic formula γ(Nij , aij) is repeated in any of the conjunctions
therein. (Were this the case, we could obtain an equivalent formula by remov-
ing those redundant terms, and this situation makes our bound easier to state.) It
follows that g has weight at most

d ≤ max
1≤i≤m

nm,

and therefore we only need to consider substructures belonging to isomorphism
classes ψ with

‖ψ‖ ≤ max
1≤i≤m

nm

when performing our counts sψ(A) for computing (ξ(Γ))(A). �

Note that the preceding result is only interesting because it is possible to obtain
a nontrivial bound on ‖ψ‖ such that zψ appears in the polynomial g. Consider the
polynomial realization of

∨

(A,F )∈P ′

∀N∈Ob(I )∀a∈F (N)γ(N, a)

from our cheap example of a formula expressing “A is among the structures in
StructρA which satisfy property P” given earlier. Applying the method of the pre-
ceding proof to that polynomial, we discover that we are merely counting (if one
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can call it that) whether A is equal to any structure which satisfies property P .
Clearly this can be done, but it’s not terribly illuminating.

One can verify that for some properties, like whether a graph A contains a
3-cycle, it is possible to choose a corresponding Γ for which ΓA is true when A

contains a 3-cycle without using the above trick. Indeed, one can see that only
subgraphs of order at most 3 need to be examined in order to check whether A

has a 3-cycle, and that this will correspond to the availability of a low-complexity
choice of Γ (in that max1≤i≤m nm is only 3).

Our comment about locality should also be clear from this example. Checking
for embedded copies of a subgraph of size 3 is a local check, since we have a bound
on the amount of the graph we have to examine at once. On the other hand,
checking whether a graph is isomorphic to a given graph is significantly nonlocal,
in the sense that examining large subgraphs may not yield a direct affirmation or
denial of the property in question. We would expect a corresponding formula Γ to
always have a high complexity in such cases.

5. Structures, formally

Here we provide the formal definitions for the notion of a mathematical structure
used throughout this paper.

5.1. Definition of a structure. Given categories C and D we denote by

Fun(C ,D)

the class of functors from C to D and we denote by

Fun(C ,D)

the functor category from C to D .

Definition 25 (Presignature). Given an index category I and categories C and
D we refer to a functor ρ : I → Fun(C ,D) as a presignature.

To each presignature we associate another functor. Given a category C we write
Ob(C ) to indicate the class of objects of C and Mor(C ) to indicate the class of
morphisms of C .

Definition 26 (Extractor). Given a presignature ρ : I → Fun(C ,D) the extractor
ρ : C → Fun(I ,D) is defined as follows. For A ∈ Ob(C ) we define ρA : I → D

by ρA(N) := (ρ(N))(A) for each N ∈ Ob(I ) and ρA(ν) := (ρ(ν))A for each
ν ∈ Mor(I ). For each morphism h : A → B in C we define ρh : ρA → ρB by
(ρh)N := (ρ(N))(h) for each N ∈ Ob(I ).

Proposition 3. The extractor ρ : C → Fun(I ,D) of a presignature ρ : I →
Fun(C ,D) is a functor.

Proof. We show that ρ takes objects to objects. Given A ∈ Ob(C ) we show that
ρA : I → D is a functor. Given N ∈ Ob(I ) we have that ρ(N) : C → D is a
functor and hence ρA(N) = (ρ(N))(A) ∈ Ob(D). Given ν ∈ Mor(I ) we have that
ρ(ν) is a natural transformation and hence ρA(ν) = (ρ(ν))A ∈ Mor(D). Thus, ρA
takes objects to objects and morphisms to morphisms. Observe that

ρA(idN ) = (ρ(idN ))A = (idρ(N))A = id(ρ(N))(A) = idρA(N)
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so ρA takes identities to identities. Given morphisms ν1 : N1 → N2 and ν2 : N2 →
N3 in I we have that

ρA(ν2◦ν1) = (ρ(ν2◦ν1))A = (ρ(ν2)◦ρ(ν1))A = (ρ(ν2))A◦(ρ(ν1))A = ρA(ν2)◦ρA(ν1)

so ρA respects composition of morphisms. Thus, ρA is a functor and ρ takes objects
to objects.

We show that ρ takes morphisms to morphisms. Given a morphism h : A→ B

in C we show that ρh : ρA → ρB is a natural transformation. Given a morphism
ν : N1 → N2 in I we have that ρ(ν) : ρ(N1) → ρ(N2) is a natural transformation
so

ρB(ν) ◦ (ρh)N1
= (ρ(ν))B ◦ (ρ(N1))(h)

= (ρ(N2))(h) ◦ (ρ(ν))A

= (ρh)N2
◦ ρA(ν)

and hence ρh is also a natural transformation, which is a morphism in Fun(I ,D).
We show that ρ takes identities to identities. Given an object A ∈ Ob(C ) and

an object N ∈ Ob(I ) we have that

(ρidA)N = (ρ(N))(idA) = id(ρ(N))(A) = idρA(N)

so ρidA is the identity natural transformation of ρA.
We show that ρ respects composition of morphisms. Given morphisms h1 : A1 →

A2 and h2 : A2 → A3 in C and N ∈ Ob(I ) we have that

(ρh2◦h1
)N = (ρ(N))(h2 ◦ h1) = (ρ(N))(h2) ◦ (ρ(N))(h1) = (ρh2

)N ◦ (ρh1
)N

so ρh2◦h1
= ρh2

◦ ρh1
, as desired. �

Recall the categorical formulation of images.

Definition 27 (Factorization). Given a morphism h : A → B in a category C we
refer to a triple (V, θ, ψ) where V ∈ Ob(C ), θ : A → V , ψ : V → B, and h = ψ ◦ θ
as a factorization of h.

Definition 28 (Image candidate). Given a morphism h : A → B in a category C

we refer to a factorization (V, θ, ψ) of h as an image candidate for h when ψ is
monic.

Definition 29 (Image triple). Given a morphism h : A → B in a category C we
say that an image candidate (V1, θ1, ψ1) is an image triple for h when given any
image candidate (V2, θ2, ψ2) for h there exists a unique morphism s : V1 → V2 such
that ψ2 ◦ s = ψ1.

Definition 30 (Image of a morphism). Given a morphism h : A→ B in a category
C for which an image triple (V, θ, ψ) exists the image Im(h) of h is the subobject
of B containing ψ.

The image of a morphism is well-defined when it exists by the universal property
of image triples.

We are interested in those presignatures which support taking images in a certain
sense.
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Definition 31 (Signature). Given a presignature ρ : I → Fun(C ,D) we say that
ρ is a (C ,D)-signature on the index category I when given any monomorphism
F : U →֒ ρA in Fun(I ,D) and any morphism h : A → B in C we have that
Im(ρh ◦ F ) exists in Fun(I ,D). When C = D we refer to a (C ,D)-signature on
I as a C -signature on I .

Definition 32 (Source of a signature). Given a signature ρ : I → Fun(C ,D) we
refer to C as the source of ρ and say that ρ is a C -sourced signature.

Definition 33 (Target of a signature). Given a signature ρ : I → Fun(C ,D) we
refer to D as the target of ρ and say that ρ is a D-targeted signature.

We give some examples of signatures. We denote by II the category whose
objects form the set {Ni | i ∈ I } and whose morphisms are all identities. Given
n ∈ N we define In := I{1,...,n}. We write N rather than N1 for the single object
of I1.

We make use of the following characterization of Fun(II ,D) for any category
D .

Definition 34 (Sequence category). Given a set I and a category D the sequence
category DI of D indexed by I is defined as follows. The objects of DI are the
I-indexed sequences {Ai}i∈I of objects of D . A morphism from {Ai}i∈I to {Bi}i∈I
is an I-indexed sequence {hi : Ai → Bi}i∈I of morphisms of D . The identity mor-
phism of {Ai}i∈I is {idAi : Ai → Ai}i∈I . Composition of morphisms is performed

componentwise. That is, if h1 : A1 → A2 and h2 : A2 → A3 are morphisms in DI

then we define h2 ◦ h1 : A1 → A3 by (h2 ◦ h1)i := (h2)i ◦ (h1)i.

In other words, DI is the Ith direct power of the category D .
It is evident that Fun(II ,D) is canonically isomorphic to DI . Given n ∈ N

we define Dn := D{1,...,n}. There is also a canonical isomorphism between D1 and
D itself. Throughout we suppress these isomorphisms and speak of objects and
morphisms of DI rather than the corresponding functors from II to D and their
natural transformations wherever they appear.

Observe that any construction in DI is a sequence of constructions in D . Monomor-
phisms in DI are sequences of monomorphisms in D , factorizations in DI are se-
quences of factorizations in D , subobjects in DI are sequences of subobjects in D ,
and so forth.

We have a convenient criterion for a presignature to be a signature on II .

Proposition 4. Suppose that ρ : II → Fun(C ,D) is a presignature such that D

has all images. We have that ρ is a signature.

Proof. Suppose that F : U →֒ ρA is a monomorphism in Fun(II ,D) and that
h : A → B is a morphism in C . Since D has all images each of the components
(ρh ◦ F )i of ρh ◦ F has an image in D and this sequence of images is the image of
ρh ◦ F in Fun(II ,D). �

All of the following signatures have index category II for some I. We will see
signatures with more involved index categories later. Note that Set and Setop have
all images.

Definition 35 (Identity signature). Given a category C which has all images the
identity signature on C is the functor ρ : I1 → Fun(C ,C ) where ρ(N) := idC

where idC is the identity functor of C .
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Definition 36 (n-set functor). Given n ∈ N denote by
(

≤n

)

the functor from Set

to Set which takes a set A to the collection
(

A
≤n

)

:=
⋃n
i=1

(

A
n

)

of nonempty subsets

of size at most n in A and takes a function h : A → B to the induced map from
(

A
≤n

)

to
(

B
≤n

)

. We refer to
(

≤n

)

as the n-set functor.

Definition 37 (n-hypergraph signature). The n-hypergraph signature is the functor
ρ : I1 → Fun(Set,Set) where ρ(N) :=

(

≤n

)

.

Definition 38 (nth Cartesian power functor). Given n ∈ N denote by n the
functor from Set to Set which takes a set A to the collection of n-tuples An over
A and takes a function h : A→ B to the induced map from An to Bn. We refer to
n as the nth Cartesian power functor.

Definition 39 (Cartesian signature). Given an index set I and a function ρ̃ : I →
N the Cartesian signature of ρ̃ is the functor ρ : II → Fun(Set,Set) given by
ρ(Ni) :=

ρ̃(i).

Definition 40 (Powerset functor). Denote by P the functor from Set to Set which
takes a set A to the collection of subsets P(A) of A and takes a function h : A→ B

to the induced map from P(A) to P(B). We refer to P as the powerset functor.

Definition 41 (Hypergraph signature). The hypergraph signature is the functor
ρ : I1 → Fun(Set,Set) given by ρ(N) := P.

Definition 42 (Contravariant powerset functor). Denote by Pop the functor from
Set to Setop which takes a set A to the collection of subsets P(A) of A and takes
a function h : A → B to the induced map from P(B) to P(A). We refer to Pop as
the contravariant powerset functor.

Definition 43 (Pseudospace signature). The pseudospace signature is the functor
ρ : I1 → Fun(Set,Setop) given by ρ(N) := Pop.

Our central objects of study are manufactured from signatures.

Definition 44 (Structure). Given a (C ,D)-signature ρ on an index category I

and A ∈ Ob(C ) we refer to a subobject A of ρA in the category Fun(I ,D) as a
(C ,D)-structure of signature ρ on A (or as a ρ-structure when we want to emphasize
the signature). When C = D we refer to a (C ,D)-structure as a C -structure.

We will often indicate a structure by giving a member of the corresponding
equivalence class of monomorphisms into ρA. That is, we will introduce a structure
A of signature ρ by saying something like “consider a (C ,D)-structure A of sig-
nature ρ containing F” where F is a monomorphism in Fun(I ,D) with codomain
ρA and A is understood to be the equivalence class of monomorphisms which is the
corresponding subobject of ρA. If we want to be even more succinct we will write
A := (A,F ) where F is a monomorphism with codomain ρA.

5.2. Parts of a structure. We name the various basic parts of a structure.

Definition 45 (Universe). Given a structure A on an object A we refer to A as
the universe of A.

Definition 46 (Relation, arity of a relation). Given a structure A on an object A
of signature ρ : I → Fun(C ,D) andN ∈ Ob(I ) we refer to the class of morphisms
AN := {FN | F ∈ A } in D as the relation of A at N . We say that AN has arity
ρ(N) or that AN is ρ(N)-ary.
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There is a corresponding idea for morphisms of I . Given a category D we
denote by Mor(D) the morphism category whose objects are the morphisms of
D and whose morphisms are natural transformations between the corresponding
diagrams in D . Given a natural transformation η : X → Y of functors from I to
D and a morphism ν : N1 → N2 in I we obtain a morphism from X(ν) to Y (ν)
in Mor(D), which we refer to as the component ην of η at ν in analogy with the
usual components of a natural transformation.

Definition 47 (Relator, arity of a relator). Given a structure A on an object A of
signature ρ : I → Fun(C ,D) and ν ∈ Mor(I ) we refer to the class of morphisms
Aν := {Fν | F ∈ A } in Mor(D) as the relator of A at ν. We say that Aν has
arity ρ(ν) or that Aν is ρ(ν)-ary.

In many contexts it will happen that AN is actually a subobject of ρA(N). Tra-
ditionally relations on a set are defined without reference to a particular structure.
One possible generalization of this is to take a relation on A of arity ρ(N) to be
a subobject of ρA(N), but it is not clear that AN is always a subobject of ρA(N)
for structures as we have defined them. Similar comments hold for an extrinsic
definition of relators.

Definition 48 (Source). Given a (C ,D)-structure A we refer to C as the source
of A and say that A is a C -sourced structure.

Definition 49 (Target). Given a (C ,D)-structure A we refer to D as the target
of A and say that A is a D-targeted structure.

5.3. Categories of structures. We consider categories whose objects are struc-
tures with a common signature.

Definition 50 (Similarity class). Given a signature ρ we refer to the class of all
structures of signature ρ as the ρ similarity class, which we denote by Structρ.

Definition 51 (Similar structures). We say that two structures A and B of the
same signature ρ are similar structures or that A and B are of the same similarity
type.

A homomorphism from a structure A to a structure B of the same similarity
type ρ should be a morphism h from the universe A of A to the universe B of B
which “respects the structure of A and B”. In order to formalize this we make use
of the extractor of ρ.

Definition 52 (Image of a structure). Given a (C ,D)-signature ρ, objects A,B ∈
Ob(C ), a morphism h : A → B, and a structure A of signature ρ on A containing
F we refer to h(A) := Im(ρh ◦ F ) as the image of A under h.

Were we to use presignatures rather than signatures to define structures the
image of A under h : A → B might not exist, in which case our lives would be
much harder.

Definition 53 (Morphism of structures). Let A be a structure on an object A of
signature ρ and let B be a structure on an object B of signature ρ. We say that a
morphism h : A→ B is a morphism from A to B when h(A) ≤ B as subobjects of
ρB. We write h : A → B to indicate that h is a morphism from A to B.
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Figure 1. Composition is isotone

Definition 54 (Category of structures of signature ρ). We denote by Structρ the
category of structures of signature ρ (or the category of ρ-structures) whose objects
are the structures of similarity type ρ : I → Fun(C ,D), whose morphisms are
morphisms of structures, whose identity morphisms are those induced by the iden-
tity morphisms of C , and whose composition of morphisms is given by composition
of underlying morphisms in C .

In order to establish that Structρ is indeed a category we need the following
lemmas.

Lemma 3 (Composition is isotone). Suppose that C is a category with A1, A2,
A3, and A4 objects of C , h1 : A1 →֒ A3, h2 : A2 →֒ A3, and h3 : A3 → A4 such that
h1 ≤ h2 in which Im(h3 ◦ h1) and Im(h3 ◦ h2) exist. We have that Im(h3 ◦ h1) ≤
Im(h3 ◦ h2).

Proof. Let (V1, θ1, ψ1) be an image triple for h3 ◦h1 and let (V2, θ2, ψ2) be an image
triple for h3 ◦ h2. Since h1 ≤ h2 there exists a morphism h4 : A1 → A2 such that
h1 = h2 ◦ h4. It follows that

h3 ◦ h1 = h3 ◦ h2 ◦ h4 = ψ2 ◦ θ2 ◦ h4

so (V2, θ2 ◦ h4, ψ2) is an image candidate for h3 ◦ h1. Since (V1, θ1, ψ1) is an image
triple for h3 ◦ h1 there exists a morphism s : V1 → V2 such that ψ2 ◦ s = ψ1. This
implies that ψ1 ≤ ψ2 and hence Im(h3 ◦ h1) ≤ Im(h3 ◦ h2). �

The situation described in the preceding proof is depicted in Figure 1.

Lemma 4 (Morphism composition). Suppose that C is a category with Ai ∈ Ob(C )
for i ∈ {1, 2, 3, 4, 5, 6}, h1 : A1 → A2, h2 : A2 → A3, h3 : A4 →֒ A1, h4 : A5 →֒ A2,
and h5 : A6 →֒ A3 such that Im(h1 ◦ h3), Im(h2 ◦ h4), and Im(h2 ◦ h1 ◦ h3) exist.
Suppose also that ψ1 ∈ Im(h1 ◦ h3), Im(h2 ◦ ψ1) exists, Im(h1 ◦ h3) ≤ Im(h4), and
Im(h2 ◦ h4) ≤ Im(h5). We have that Im(h2 ◦ h1 ◦ h3) ≤ Im(h5).

Proof. By the assumption that Im(h1 ◦ h3) ≤ Im(h4) we have that ψ1 ≤ h4. Let
(V1, θ1, ψ1) be an image triple for h1 ◦ h3, which must exist by our assumption that
ψ1 ∈ Im(h1 ◦ h3). By Lemma 3 we have that

Im(h2 ◦ ψ1) ≤ Im(h2 ◦ h4) ≤ Im(h5).

Since h2 ◦h1◦h3 = h2 ◦ψ1◦θ1 it suffices to show that Im(h2 ◦ψ1 ◦θ1) ≤ Im(h2 ◦ψ1).
Let (V2, θ2, ψ2) be an image triple for h2 ◦ψ1 ◦θ1 and let (V3, θ3, ψ3) be an image

triple for h2 ◦ ψ1. Since h2 ◦ ψ1 = ψ3 ◦ θ3 we have that h2 ◦ ψ1 ◦ θ1 = ψ3 ◦ θ3 ◦ ψ1

and hence (V3, θ3 ◦ θ1, ψ3) is an image candidate for h2 ◦ ψ1 ◦ θ1. By the universal
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Figure 2. Morphism composition

property of the image triple of h2 ◦ ψ1 ◦ θ1 we find that there exists a morphism
s : V2 → V3 such that ψ3 ◦ s = ψ2. This implies that ψ2 ≤ ψ3 and hence

Im(h2 ◦ ψ1 ◦ θ1) = Im(ψ2) ≤ Im(ψ3) = Im(h2 ◦ ψ1),

as desired. �

The situation described in the preceding proof is depicted in Figure 2.
We can now prove that structures form categories.

Proposition 5. We have that Structρ is a category for any signature ρ.

Proof. We show that morphisms compose. Let Ai := (Ai, Fi) with Fi : Ui →֒ ρAi
for i ∈ {1, 2, 3}. Suppose that h1 : A1 → A2 and h2 : A2 → A3 are morphisms.
We must establish that h2 ◦ h1 is a morphism from A1 to A3, so we need that
Im(h2 ◦ h2 ◦ F1) ≤ A3. Unraveling definitions we find that this is precisely the
situation in Lemma 4, so we have that h2 ◦ h1 : A1 → A3.

That composition of morphisms in Structρ is associative follows directly from
the associativity of composition in C . Similarly, identity morphisms in Structρ

satisfy the requisite identity because identity morphisms in C do so. �

Definition 55 (Kinship class). Given a signature ρ : I → Fun(C ,D) and an
object A of C we refer to the class of all structures of signature ρ with universe A
as the (ρ,A) kinship class, which we denote by StructρA.

Definition 56 (Kindred structures). We say that two structures A and B of the
same similarity type with the same universe are kindred structures or that A and
B are of the same kinship type.

5.4. Example: Pairs. Take ρ : I1 → Fun(C ,C ) to be the identity signature on
a category C . Recall that by definition of the identity signature C must have all
images.

Definition 57 (Pair in C ). Given a category C a pair in C (or a C -pair) is an
ordered pair (A, Im(F )) where Im(F ) is a subobject of A in C .

Definition 58 (Pair class in C ). We refer to the class of all pairs in C as the pair
class in C (or the C -pair class), which we denote by Pair(C ).
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We will usually write (A,F ) rather than (A, Im(F )) and remember that (A,F1)
and (A,F2) are the same pair in C when Im(F1) = Im(F2). Note that (A1, F1) 6=
(A2, F2) as pairs when A1 6= A2, even if the domains of F1 and F2 are isomorphic.

Definition 59 (Morphism of pairs in C ). Given a category C , pairsA1 := (A1, F1)
and A2 := (A2, F2), and a morphism h : A1 → A2 we say that h is a morphism from
A1 to A2 and write h : A1 → A2 when Im(h ◦ F1) ≤ Im(F2).

This is to say that a morphism of pairs is a morphism of the ambient objects A1

and A2 which takes Im(F1) to Im(F2).

Definition 60 (Category of pairs in C ). Given a category C with all images the
category of pairs in C (or the category of C -pairs) is the category Pair(C ) whose
objects are C -pairs, whose morphisms are morphisms of pairs in C , for which
the identity of (A,F ) is idA, and whose composition is given by composition of
morphisms in C .

We need that C has all images to show that Pair(C ) is a category. If C doesn’t
have all images then morphisms of pairs may not be composable even if their
underlying morphisms in C are composable.

Proposition 6. Given a category C with all images we have that Pair(C ) is a
category.

Proof. We show that morphisms compose. Suppose that Ai := (Ai, Fi) ∈ Pair(C )
for each i ∈ {1, 2, 3} and that h1 : A1 → A2 and h2 : A2 → A3 are morphisms of
pairs. We show that h2 ◦ h1 : A1 → A3 is a morphism from A1 to A3. Since C

has all images this is precisely the situation in Lemma 4 so morphisms in Pair(C )
compose.

Again the associativity of composition and the identity property for Pair(C )
follow immediately from those for C . �

It is not surprising that the proof that Pair(C ) is essentially identical to the
proof that Structρ is a category since by our characterization of the category
Fun(I1,C ) we find that Structρ ∼= Pair(C ).

From this isomorphism we see that given a structure A := (A,F ) ∈ Structρ we
have that the relation AN is the subobject Im(F ) of A in C and that A has no
nontrivial basic relators.

5.5. Example: Hypergraphs. We examine the category of structures obtained
from the n-hypergraph signature ρ : I1 → Fun(Set,Set).

Definition 61 (n-hypergraph). Given a set A we refer to A := (A,F ) where

F ⊂
(

A
≤n

)

as an n-hypergraph on A.

We denote by Hypn the class of n-hypergraphs.

Definition 62 (Morphism of n-hypergraphs). Given n-hypergraphsA1 := (A1, F1)
and A2 := (A2, F2) we refer to a function h : A1 → A2 as a morphism from A1 to
A2 and write h : A1 → A2 when h(F1) ⊂ F2 where

h(F1) := { {h(a) | a ∈ E } | E ∈ F1 } .

Definition 63 (Category of n-hypergraphs). We denote by Hypn the category of
n-hypergraphs whose objects form the class Hypn, whose morphisms are morphisms
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of n-hypergraphs, for which the identity of (A,F ) is idA, and whose composition is
given by composition of functions.

It is evident that Structρ ∼= Hypn.

5.6. Further examples. When ρ is the hypergraph signature given by ρ(N) := P ,
we have that Structρ is the category of hypergraphs, which has the category of
simplicial sets as a subcategory. When ρ is instead the pseudospace signature given
by ρ(N) := P op, we have that Structρ has the category of topological spaces as a
subcategory. We leave it to the reader to unravel what a pseudospace is supposed
to be (concretely) from this abstract definition.

6. The Yoneda embedding

Although our definition of structure appears to be more general than the struc-
tures usually considered in model theory, whose basic relations are subsets of Carte-
sian powers of the universe, we show that each category of Set-sourced structures
embeds into a category of Set-structures whose basic relations are all subsets of
Cartesian powers of the universe, at the expense that our new index category may
be large where our original index category was small.

The driving device here is the Yoneda embedding. Given a locally small category
C let Yo : C → Fun(C op,Set) denote the contravariant hom-functor. Recall the
following embedding of categories due to Yoneda.

Lemma 5 (Yoneda Lemma). Let C be a locally small category. The functor Yo
is full and faithful.

We actually need more general source categories than Set.

Definition 64 (Exponential category). We say that a full subcategory C of Set is
exponential when C is closed under taking subsets and forming exponential objects.

One example of an exponential category is the full subcategory of Set whose
objects are the empty set and every singleton set. The largest possible example of
an exponential category is Set itself. We will be most interested in the exponential
category FinSet whose objects form the class FinSet of finite sets.

Given an exponential category C and a signature ρ : I → Fun(C ,D) we apply
the Yoneda Lemma to Structρ to obtain an embedding

Yo : Structρ →֒ Fun((Structρ)op,Set).

Each structure A ∈ StructρA determines a functor

YoA : (Structρ)op → Set .

If A ∈ StructρA and C ∈ StructρC with A,C ∈ Ob(C ) then

YoA(C) = hom(C,A) ⊂ AC

so YoA can be restricted on its codomain to a functor from (Structρ)op to C .

Definition 65 (Exponential Yoneda functor). Given an exponential category C

and a signature ρ : I → Fun(C ,D) the exponential Yoneda functor

YoC : Structρ → Fun((Structρ)op,C )

of ρ over C is the functor obtained by restricting the codomain of YoA to C for
each A ∈ Structρ.
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Restricting the codomain of a functor preserves embeddings so the exponential
Yoneda functor is also an embedding, which we are justified in calling the exponen-
tial Yoneda embedding.

Definition 66 (Yoneda signature). Given an exponential category C and a sig-
nature ρ : I → Fun(C ,D) the Yoneda signature ρC of ρ over C is the functor
ρC : (Structρ)op → Fun(C ,C ) defined as follows. For C ∈ StructρC the functor
ρC (C) : C → C is given by ρC (C)(A) := AC for each set A and

ρC (C)(h) := h ◦ : AC1 → AC2

for each function h : A1 → A2. Given a morphism f : C2 → C1 in Structρ the
natural transformation ρC (f) : ρC (C1) → ρC (C2) is given by

ρC (f)A := ◦ f : ρC (C1)(A) → ρC (C2)(A).

In order to show that ρC is a signature we need the following lemma about
exponential categories.

Lemma 6. Given an exponential category C and a function h : A → B in C we
have that h has an image triple (V, θ, ψ) in C where θ is surjective.

Proof. Since C is closed under taking subobjects we can form the subset V ⊂ B

given by V := { b ∈ B | (∃a ∈ A)(h(a) = b) }. Define θ : A → V by θ(a) := h(a) for
each a ∈ A and let ψ : V →֒ B be the inclusion of V as a subset of B. Since C is a
full subcategory of Set we have that (V, θ, ψ) remains an image triple for h in C .
Observe that θ is surjective. �

Proposition 7. The Yoneda signature ρC is a signature.

Proof. We show that ρC is a functor. ForC ∈ StructρC we show that ρC (C) : C → C

is a functor and hence an object of Fun(C ,C ).
Given A ∈ Ob(C ) we have that ρC (C)(A) = AC , which is an object of C since

A,C ∈ Ob(C ) and C is an exponential category. Thus, ρC (C) takes objects to
objects. Given a function h : A1 → A2 in C we have that ρC (C)(h) : AC1 → AC2 is
a function. Thus, ρC (C) takes morphisms to morphisms. Given an identity map
idA : A→ A in C we have that

ρC (C)(idA) = idA ◦ = idAC : A
C → AC .

Thus, ρC (C) takes identities to identities. Given functions h1 : A1 → A2 and
h2 : A2 → A3 in C we have that

ρC (C)(h2 ◦ h1) = (h2 ◦ h1) ◦

= h2 ◦ (h1 ◦ )

= (h2 ◦ ) ◦ (h1 ◦ )

= ρC (C)(h2) ◦ ρ
C (C)(h1)

so ρC (C) respects composition. We find that ρC (C) is a functor and hence ρC

takes objects to objects.
For f : C2 → C1 in Structρ we show that ρC (f) : ρC (C1) → ρC (C2) is a natural

transformation and hence a morphism of Fun(C ,C ). Given a function h : A1 → A2

in C it is immediate that

ρC (f)A2
◦ ρC (C1)(h) = h ◦ ◦ f = ρC (C2)(h) ◦ ρ

C (f)A1
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so ρC (f) is a natural transformation and hence ρC takes morphisms to morphisms.
Given an identity morphism idC : C → C and any A ∈ Ob(C ) we have that

ρC (idC)A = ◦ idC = idAC so ρC (idC) = idρC (C) is the identity natural transfor-

mation of ρC (C) and ρC takes identities to identities.
Given morphisms f2 : C3 → C2 and f1 : C2 → C1 in Structρ and A ∈ Ob(C )

we have that
ρC (f2)A ◦ ρC (f1)A = ◦ f1 ◦ f2 = ρC (f1 ◦ f2)A

so ρC respects composition and is thus a functor from (Structρ)op to Fun(C ,C ).
It remains to show that given a monomorphism F : U →֒ ρC

A1
in

Fun((Structρ)op,C )

and any function h : A1 → A2 in C we have that Im(ρC
h ◦ F ) exists in

Fun((Structρ)op,C ).

For each C ∈ Ob(C ) let (VC, θC, ψC) be an image triple for (ρC
h ◦F )C where θC

is surjective as guaranteed by Lemma 6. For each morphism f : C2 → C1 we have
that

Im(ρC

A2
(f) ◦ ψC1

) = Im(ρC

A2
(f) ◦ ψC1

◦ θC1
)

= Im(ψC2
◦ θC2

◦ U(f))

≤ Im(ψC2
)

so the codomain restriction

gf := (ρC

A2
(f) ◦ ψC1

)|VC2
: VC1

→ VC2

of ρC
A2

(f) ◦ ψC1
to VC2

exists in C .

We use this data to factor ρC
h ◦ F . Define a functor V : (Structρ)op → C by

V (C) := VC for each C ∈ Structρ and V (f) := gf for each morphism f : C2 → C1

in Structρ. Define natural transformations θ : U → V and ψ : V → ρC
A2

whose
components at C are θC and ψC, respectively.

We show that V : (Structρ)op → C is a functor. Given C ∈ Structρ we have
that V (C) = VC ∈ Ob(C ) by definition of V so V takes objects to objects. Given
a morphism f : C2 → C1 in Structρ we have that V (f) = gf is a morphism in C

by definition so V takes morphisms to morphisms. Given an object C ∈ StructρC
and its identity morphism idC : C → C we have that ρC is a presignature so by
Proposition 3 we have that ρC

A2
is a functor and hence ρC

A2
(idC) = idρC

A2
(C). It

follows that

V (idC) = gidC
= (ρC

A2
(idC) ◦ ψC)|VC

= (idρC

A2
(C) ◦ψC)|VC

= ψC|VC
= idV (C)

so V takes identities to identities. Given morphisms f2 : C3 → C2 and f1 : C2 → C1

in Structρ we have that Im(ρC
A2

(f1) ◦ ψC1
) ≤ Im(ψC2

) and hence

V (f1 ◦ f2) = gf1◦f2

= (ρC

A2
(f1 ◦ f2) ◦ ψC1

)|VC3

= (ρC

A2
(f2) ◦ ρ

C

A2
(f1) ◦ ψC1

)|VC3

= (ρC
A2

(f2) ◦ ψC2
)|VC3

◦ (ρC
A2

(f1) ◦ ψC1
)|VC2

= V (f2) ◦ V (f1).

Thus, V respects composition and is a functor from (Structρ)op to C .
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It is evident that θ and ψ are natural transformations.
Since each of the components of ψ are injective we have that ψ is monic. By

definition we have that ρC
h ◦ F = ψ ◦ θ. It follows that Im(ρC ◦ F ) exists in

Fun((Structρ)op,C ) and contains ψ. �

We can use the exponential Yoneda embedding to obtain a functor from Structρ

to the category of C -structures Structρ
C

.

Definition 67 (Cartesian Yoneda functor). Given an exponential category C and
a signature ρ : I → Fun(C ,D) the Cartesian Yoneda functor

Ca: Structρ → Structρ
C

is defined as follows. Given A ∈ StructρA we define Ca(A) to be the subobject of ρC
A

containing the monomorphism FA : YoC

A
→֒ ρC

A given by (FA)C : YoC

A
(C) → ρC

A(C)
where (FA)C(f) := f . Given h : A1 → A2 we define Ca(h) := h.

Intuitively, the Cartesian Yoneda functor is the natural inclusion of hom(C,A)
into AC .

We will need the following lemma about images in general categories which gives
a sufficient condition for the image of structure under a morphism to be contained
in another structure.

Lemma 7. Let C be a category with X,Y, Z ∈ Ob(C ) and morphisms α : X → Z,
β : X → Y , and γ : Y →֒ Z such that α = γ ◦ β. Let U ∈ Ob(C ) with θX : X → U

and θZ : U →֒ Z a factorization of α witnessing that θZ is the image of α. We have
that θZ ≤ γ.

Proof. Since β : X → Y and γ : Y →֒ Z form a factorization of α we have by
definition of the image θZ that there exists a morphism s : U → Y such that
θZ = γ ◦ s. Thus, θZ ≤ γ. �

Proposition 8. We have that Ca: Structρ → Structρ
C

is a functor.

Proof. We show that Ca takes objects to objects. Given A ∈ StructρA we must

show that FA : YoC

A
→ ρC

A is a monomorphism. Let U : (Structρ)op → C be

a functor and let H1, H2 : U → YoC

A
be natural transformations. We show that

FA ◦H1 = FA ◦H2 implies that H1 = H2.
Fix an objectC ∈ StructρC . We have that (YoC

A
)(C) = hom(C,A) and (ρC

A)(C) =
AC . By definition we find that (FA)C : hom(C,A) → AC is the map taking a mor-
phism h : C → A to its underlying function h : C → A. We have that U(C) is a set
and (H1)C, (H2)C : U(C) → hom(C,A) are functions. Since (FA)C is injective we
have that (H1)C = (H2)C. As the components of H1 and H2 are the same we have
that H1 = H2. Thus, FA is a monomorphism and Ca does take objects of Structρ

to objects of Structρ
C

.
We show that Ca takes morphisms to morphisms. Given A1 ∈ StructρA1

, A2 ∈

StructρA2
, and a morphism h : A1 → A2 we must show that

Ca(h)(Ca(A1)) ≤ Ca(A2)

as subobjects of ρC
A2

.
Choose representative monomorphisms FA1

and FA2
of Ca(A1) and Ca(A2),

respectively. By Lemma 7 it suffices to show that there exists a natural transfor-
mation η : YoC

A1
→ YoC

A2
such that ρC

h ◦ FA1
= FA2

◦ η. We claim that we can
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take η = YoC

h . Unraveling definitions we find that for each C ∈ Structρ and each

f ∈ YoC

A1
(C) we have

(ρC

h ◦ FA1
)C(f) = h ◦ f = (FA2

◦YoC

h )C(f),

as claimed.
We show that Ca takes identities to identities. GivenA ∈ StructρA and idA : A →

A we have that Ca(idA) = idA, which is the identity morphism of Ca(A) in

Structρ
C

.
We show that Ca respects the composition of morphisms. Since Ca maps a

morphism h : A1 → A2 to its underlying function h : A1 → A2 and in both Structρ

and Structρ
C

composition of morphisms is given by composition of the underlying
functions we have that Ca respects composition. �

The Cartesian Yoneda functor is an embedding of categories.

Proposition 9. The functor Ca: Structρ → Structρ
C

is full and faithful.

Proof. We show that Ca is full. Suppose that h ∈ hom(Ca(A1),Ca(A2)). By

definition we have that ρC (h)(Ca(A1)) ≤ Ca(A2) so there exists some η : YoC

A1
→

YoC

A2
such that ρC

h ◦ FA1
= FA2

◦ η for representative monomorphisms FA1
and

FA2
of A1 and A2, respectively. Since idA1

∈ hom(A1,A1) this implies that

h = h ◦ idA1
= (ρC

h ◦ FA1
)A1

(idA1
) = (FA2

◦ η)A1
(idA1

)

from which it follows that h is in the image of

(FA2
)A1

: hom(A1,A2) → AA1

2 .

Thus, h ∈ hom(A1,A2).
Note that since Ca(h) := h we have that Ca is faithful. �

We are thus justified in referring to Ca as the Cartesian Yoneda embedding. As
a special case, we have proven our remark from the beginning of this section. Given
a signature ρ : I → Fun(Set,D) we have that Ca is an embedding of Structρ into

Structρ
Set

. Given objects A ∈ StructρA and C ∈ StructρA the relation of Ca(A) at
C is a subset of AC , or a C-ary relation on A in the classical sense.
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